Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees.

Identifieur interne : 001D04 ( Main/Exploration ); précédent : 001D03; suivant : 001D05

Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees.

Auteurs : Bin Liu [Allemagne] ; Heinz Rennenberg [Allemagne] ; Jürgen Kreuzwieser [Allemagne]

Source :

RBID : pubmed:26308462

Descripteurs français

English descriptors

Abstract

The present study with young poplar trees aimed at characterizing the effect of O2 shortage in the soil on net uptake of NO3- and NH4+ and the spatial distribution of the N taken up. Moreover, we assessed biomass increment as well as N status of the trees affected by O2 deficiency. For this purpose, an experiment was conducted in which hydroponically grown young poplar trees were exposed to hypoxic and normoxic (control) conditions for 14 days. 15N-labelled NO3- and NH4+ were used to elucidate N uptake and distribution of currently absorbed N and N allocation rates in the plants. Whereas shoot biomass was not affected by soil O2 deficiency, it significantly reduced root biomass and, consequently, the root-to-shoot ratio. Uptake of NO3- but not of NH4+ by the roots of the trees was severely impaired by hypoxia. As a consequence of reduced N uptake, the N content of all poplar tissues was significantly diminished. Under normoxic control conditions, the spatial distribution of currently absorbed N and N allocation rates differed depending on the N source. Whereas NO3- derived N was mainly transported to the younger parts of the shoot, particularly to the developing and young mature leaves, N derived from NH4+ was preferentially allocated to older parts of the shoot, mainly to wood and bark. Soil O2 deficiency enhanced this differential allocation pattern. From these results we assume that NO3- was assimilated in developing tissues and preferentially used to maintain growth and ensure plant survival under hypoxia, whereas NH4+ based N was used for biosynthesis of storage proteins in bark and wood of the trees. Still, further studies are needed to understand the mechanistic basis as well as the eco-physiological advantages of such differential allocation patterns.

DOI: 10.1371/journal.pone.0136579
PubMed: 26308462
PubMed Central: PMC4550380


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees.</title>
<author>
<name sortKey="Liu, Bin" sort="Liu, Bin" uniqKey="Liu B" first="Bin" last="Liu">Bin Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
<affiliation wicri:level="3">
<nlm:affiliation>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kreuzwieser, Jurgen" sort="Kreuzwieser, Jurgen" uniqKey="Kreuzwieser J" first="Jürgen" last="Kreuzwieser">Jürgen Kreuzwieser</name>
<affiliation wicri:level="3">
<nlm:affiliation>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26308462</idno>
<idno type="pmid">26308462</idno>
<idno type="doi">10.1371/journal.pone.0136579</idno>
<idno type="pmc">PMC4550380</idno>
<idno type="wicri:Area/Main/Corpus">001B52</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B52</idno>
<idno type="wicri:Area/Main/Curation">001B52</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B52</idno>
<idno type="wicri:Area/Main/Exploration">001B52</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees.</title>
<author>
<name sortKey="Liu, Bin" sort="Liu, Bin" uniqKey="Liu B" first="Bin" last="Liu">Bin Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
<affiliation wicri:level="3">
<nlm:affiliation>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kreuzwieser, Jurgen" sort="Kreuzwieser, Jurgen" uniqKey="Kreuzwieser J" first="Jürgen" last="Kreuzwieser">Jürgen Kreuzwieser</name>
<affiliation wicri:level="3">
<nlm:affiliation>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Respiration (physiology)</term>
<term>Hypoxia (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Oxygen (metabolism)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Shoots (growth & development)</term>
<term>Plant Shoots (metabolism)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Soil (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Hypoxie (MeSH)</term>
<term>Oxygène (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (métabolisme)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Pousses de plante (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (métabolisme)</term>
<term>Respiration cellulaire (physiologie)</term>
<term>Sol (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Oxygène</term>
<term>Populus</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Respiration cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cell Respiration</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Hypoxia</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Hypoxie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present study with young poplar trees aimed at characterizing the effect of O2 shortage in the soil on net uptake of NO3- and NH4+ and the spatial distribution of the N taken up. Moreover, we assessed biomass increment as well as N status of the trees affected by O2 deficiency. For this purpose, an experiment was conducted in which hydroponically grown young poplar trees were exposed to hypoxic and normoxic (control) conditions for 14 days. 15N-labelled NO3- and NH4+ were used to elucidate N uptake and distribution of currently absorbed N and N allocation rates in the plants. Whereas shoot biomass was not affected by soil O2 deficiency, it significantly reduced root biomass and, consequently, the root-to-shoot ratio. Uptake of NO3- but not of NH4+ by the roots of the trees was severely impaired by hypoxia. As a consequence of reduced N uptake, the N content of all poplar tissues was significantly diminished. Under normoxic control conditions, the spatial distribution of currently absorbed N and N allocation rates differed depending on the N source. Whereas NO3- derived N was mainly transported to the younger parts of the shoot, particularly to the developing and young mature leaves, N derived from NH4+ was preferentially allocated to older parts of the shoot, mainly to wood and bark. Soil O2 deficiency enhanced this differential allocation pattern. From these results we assume that NO3- was assimilated in developing tissues and preferentially used to maintain growth and ensure plant survival under hypoxia, whereas NH4+ based N was used for biosynthesis of storage proteins in bark and wood of the trees. Still, further studies are needed to understand the mechanistic basis as well as the eco-physiological advantages of such differential allocation patterns. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26308462</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees.</ArticleTitle>
<Pagination>
<MedlinePgn>e0136579</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0136579</ELocationID>
<Abstract>
<AbstractText>The present study with young poplar trees aimed at characterizing the effect of O2 shortage in the soil on net uptake of NO3- and NH4+ and the spatial distribution of the N taken up. Moreover, we assessed biomass increment as well as N status of the trees affected by O2 deficiency. For this purpose, an experiment was conducted in which hydroponically grown young poplar trees were exposed to hypoxic and normoxic (control) conditions for 14 days. 15N-labelled NO3- and NH4+ were used to elucidate N uptake and distribution of currently absorbed N and N allocation rates in the plants. Whereas shoot biomass was not affected by soil O2 deficiency, it significantly reduced root biomass and, consequently, the root-to-shoot ratio. Uptake of NO3- but not of NH4+ by the roots of the trees was severely impaired by hypoxia. As a consequence of reduced N uptake, the N content of all poplar tissues was significantly diminished. Under normoxic control conditions, the spatial distribution of currently absorbed N and N allocation rates differed depending on the N source. Whereas NO3- derived N was mainly transported to the younger parts of the shoot, particularly to the developing and young mature leaves, N derived from NH4+ was preferentially allocated to older parts of the shoot, mainly to wood and bark. Soil O2 deficiency enhanced this differential allocation pattern. From these results we assume that NO3- was assimilated in developing tissues and preferentially used to maintain growth and ensure plant survival under hypoxia, whereas NH4+ based N was used for biosynthesis of storage proteins in bark and wood of the trees. Still, further studies are needed to understand the mechanistic basis as well as the eco-physiological advantages of such differential allocation patterns. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Bin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rennenberg</LastName>
<ForeName>Heinz</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kreuzwieser</LastName>
<ForeName>Jürgen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="N">Cell Respiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000860" MajorTopicYN="Y">Hypoxia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26308462</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0136579</ArticleId>
<ArticleId IdType="pii">PONE-D-15-13355</ArticleId>
<ArticleId IdType="pmc">PMC4550380</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 2003 Oct;137(2):252-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1115-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Jan;103(2):269-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 Aug 15;169(12):1150-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22673030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Sep;30(9):1096-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20354193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Dec;53(379):2351-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Sep;30(9):1118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20595637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Oct;37(10):2216-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24689809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:223-250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:313-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2009 Nov;11 Suppl 1:4-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19778364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Nov;22(11):3603-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21075769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Jul;22(10):717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12091153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2481-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1995 Nov;15(11):753-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14965994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):31-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19210725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Sep;76(1):151-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 15;9(9):e107636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25222006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(1):39-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20847100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2013 Jan;15 Suppl 1:44-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23279294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Oct;37(10):2245-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24611781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19005089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Aug 25;11:119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21867507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Jun;33(6):590-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23824240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):13548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11821433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Apr;65(7):1865-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24489071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Sep;104(4):671-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19581282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Apr;53(370):855-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 01;4:106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23641246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Sep;10(7):883-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22672155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2012;63:153-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22224450</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Fribourg-en-Brisgau</li>
</region>
<settlement>
<li>Fribourg-en-Brisgau</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Liu, Bin" sort="Liu, Bin" uniqKey="Liu B" first="Bin" last="Liu">Bin Liu</name>
</region>
<name sortKey="Kreuzwieser, Jurgen" sort="Kreuzwieser, Jurgen" uniqKey="Kreuzwieser J" first="Jürgen" last="Kreuzwieser">Jürgen Kreuzwieser</name>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D04 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D04 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26308462
   |texte=   Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26308462" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020